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Abstract. Using the recently proposed real space renormalisation group method for directed 
systems, we study the critical behaviour of directed self-avoiding walks (DSAW) on both 
directed lattice animals (DLA)  and directed percolation clusters at threshold pc (DPC) in 
two dimensions. The values for the exponent vL are found to be ~ : b $ ~ ~ = 0 . 5 9 0  and 

LDSAW = 0.528, both of which are higher than the mean-field value 0.5. It is also shown 
rigorously that 

,,DPC 

DPC remains unchanged; i.e. vf&’AW = vllDSAW = I .  

1. Introduction 

Recently, there has been much interest in studying the statistics of self-avoiding walks 
(SAW) on fractals. Rammal et al (1984) and also Ben-Avraham and Havlin (1984), 
have studied the critical behaviour of SAW on various finitely ramified non-random 
fractals. Exact results have been obtained. Comparing the exact results with the simple 
Flory approximation proposed by Rammal et al (1984), they suggested that properties 
of SAW depend not only on the fractal and fracton dimensions (Mandelbrot 1982, 
Alexander and Orbach 1982) but also on some other intrinsic aspects of the fractal. 
For random fractals, Kremer (1981), has studied the SAW properties on diluted diamond 
lattice at percolation threshold p c  using Monte Carlo methods. He found that the 
correlation length exponent v s i w  has a higher value and can be well approximated 
by the modified Flory formula vSpf4,=3/(6+2) where d is the fractal dimension of 
the critical percolation clusters. Kremer’s formula has also been found to be a good 
approximation for SAW in two-dimensional critical percolation clusters by Lam and 
Zhang (1984). They also used the real space renormalisation group (RSRG) method, 
to study the SAW properties on two-dimensional lattice animals. In the latter case, 
Kremers formula is found to be not so good. In spite of these controversies, however, 
from all the cases studied, it seems to be certain that the correlation length exponent 
vSAW always changes to a higher value when the SAW is performed on a fractal instead 
of its embedding lattice; i.e. pure Euclidean lattice. It also seems to be true that the 
value of v,‘,, is larger if the fractal object F has a smaller fractal dimension dF. The 
reasons for the change of vSAW are given, in the case of critical percolation clusters, 
by Lyklema and Kremer (1984). However, we believe that it is true for any fractal F 
with dF smaller than d. 

The purpose of this work is to study the properties of directed self-avoiding walks 
(DSAW) on certain directed random fractals. It is well known that, for a directed 
system, there are two independent correlation lengths, one parallel and the other 
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perpendicular to the preferred direction (til and 6,).  For the case of DSAW in pure 
lattices, the corresponding correlation length exponents vII and v, are found to be 
classical when d 3 2 ;  i.e. vIl = 1 and v, =0.5 (Redner and Majid 1983). How the law 
of statistics will change when DSAW is performed on a fractal with averaged fractal 
dimension d (Kinzel 1983) less than 2 is an interesting question. 

Let us consider specifically the statistics of DSAW on directed lattice animals (DLA) 
and directed percolation clusters at threshold ~ , ( D P c ) .  For any DLA or DPC configur- 
ation a, let G N ( r ;  a )  be the number of DSAW of N steps connecting the origin to site 
r. The quenched mean square end-to-end distances ( R i ( N ) )  and (R:(  N ) )  are defined 
by 

and 

where W ( a )  is the weight for the configuration a and rll and rl are respectively the 
parallel and perpendicular distances from site r to the origin projected onto the 
preferred direction. The large N behaviour of ( R f ( N ) )  and ( R : ( N ) )  defines the 
correlation length exponents vll and v,; i.e. ( R i (  N ) )  - N2”l1 and (I?:( N ) )  - N z y l .  For 
DSAW, in any fully directed fractals, either DLA or DPC, it is easy to see that rll in ( 1 )  
is always equal to N. Thus we have rigorously ( R i ( N ) )  = NZ and vll = 1. However, 
to find the value of v, is not a trivial task. 

In the following, we will use the recently proposed RSRG method for directed 
systems (Zhang and Yang (1984) hereafter referred to as ZY) to study the value of v, 
for DSAW on DLA and DPC in two dimensions. In this method, for any RG transformation, 
two effective lengths S , , ( b )  and S , ( b ) ,  parallel and perpendicular to the preferred 
direction, are defined for a given cell of linear size 6. The renormalised lattice is 
constructed from these effective lengths and is deformed from the original lattice. The 
anisotropic rescaling of these effective lengths give the anisotropic exponents vII and 
v,. This method is capable of reproducing the exact results for DSAW and very good 
results for DLA critical behaviour in two-dimensional Euclidean space (ZY, Yang and 
Zhang 1984). We believe that this method can also be used to study the critical 
behaviour of DSAW on DLA and DPC. Before we present the RG calculations, let us 
make the following remarks. Instead of using the quenched averages defined in ( 1 )  
and ( 2 ) ,  we can also define the annealed averages as 

( R W ) = ( L  W W Z G ~ ( ~ ; ~ M ) / ( ;  w ( a ) ~ ~ ~ ( r ; a ) ) ;  i = l l o r l .  (3)  

Using the same arguments as given by Hams (1983), it can be shown easily that, at 
the percolation threshold p c ,  the exponent v11 and U, remain unchanged; i.e. vll = 1 
and v, = 0.5. However, in most physical problems, the quenched averages are always 
more interesting and more difficult to calculate than the annealed averages. 

2. DSAW On D L A  

Here, we consider specifically DSAW on directed site lattice animals ( DSLA) in a square 
lattice. We construct a two-parameter renormalisation group transformation from an 
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original cell of size b x b to a renormalised cell of size 1 x 1. Figure 1 shows the cells 
for the case of b = 2 where sites belonging to the original and renormalised cells are 
marked by full circles. Each site animal in the original and renormalised cells is 
associated with fugacities K and K '  respectively. All the animal configurations which 
start at the lower-left comer spanning the original cell contribute to K'.  To define K ' ,  
we use both ro and r ,  rules as defined by Reynolds et a1 (1980). The r, rule requires 
a connected path which spans the cell either horizontally or vertically. The r l  rule 
requires spanning in a particular direction. The recursion relations of K' for b = 2 
and 3 are given in appendix 1. 

Figure 1. A transformation from an original cell of size 2 x 2  to a renormalised cell of size 
I x I .  r, ,  and rl are shown for a particular DSAW 0 (bold line). OY is the preferred 
direction. The effective lengths Sil(2) and S,(2) form the basic unit of the renormalised 
lattice. 

To study the statistics of DSAW, we associate fugacities Z and 2' to each step of 
allowed DSAW in the original and renormalised cells respectively. In the original cell, 
for every spanning site configuration which contributes to K ' ,  we count all the allowed 
DSAW starting from the origin ending on the top edge of the cell. Summing over all 
possible site configurations which contribute to K'  we finally have the corresponding 
Z ' K '  of the renormalised cell. It is easy to see that the ro and r l  rules give the same 
recursion relation of Z ' K '  although the recursion relations of K '  are different. The 
recursion relations of Z ' K '  for b = 2 and 3 are also given in Appendix 1. From both 
the recursion relations of K'  and Z ' K ' ,  we can obtain the non-trivial fixed point K * ( b )  
and Z * ( b ) .  The values of K * ( b )  together with the cell-to-cell results K*(b,  b') have 
been given in table 2 of Z Y .  The values of Z * ( b )  and Z*(b,  b')  are given in table 1 
of this paper. 

Since we are studying a directed system, using the RSRG method proposed by Z Y ,  
we have to find two effective lengths Sl,(b) and S , ( b ) ,  parallel and perpendicular to 
the preferred axis, for each original cell of size b. In every configuration a which 
contributes to K ' ,  we project the end-to-end distance r (  /3 ; a )  of a particular spanning 
DSAW p, which contributes to Z ' K ' ,  onto two axes, one the preferred direction and 
the other perpendicular to it. This gives two lengths rll( p ;  a) and r,( p ;  a )  (see figure 
1 for b = 2). We can write the first moment and the second moment definitions of the 
effective lengths by ( Z Y )  
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Table 1. RG results for DSAW on DSLA in a square lattice, (a )  using r,, rule (b) using r ,  rule. 

b b ' =  1 2 3 4 

(a) 
z* 2 

3 
4 
5 

2 
3 
4 
5 

U?) 2 
3 
4 
5 

VI1 2 
3 
4 
5 

(b) 
Z* 2 

3 
4 
5 

2 
3 
4 
5 

ui" 2 
3 
4 
5 

1.129 
1.013 
0.974 
0.955 

0.637 
0.627 
0.620 
0.616 

0.674 
0.662 
0.654 
0.648 

0.959 
0.97 1 
0.976 
0.980 

0.817 
0.842 
0.856 
0.865 

0.634 
0.622 
0.615 
0.61 1 

0.675 
0.659 
0.65 I 
0.645 

0.921 
0.9 15 
0.911 

0.604 
0.597 
0.592 

0.634 
0.627 
0.62 I 

0.986 
0.988 
0.990 

0.867 
0.875 
0.880 

0.600 
0.594 
0.589 

0.63 1 
0.624 
0.6 I9 

0.908 
0.907 

0.587 
0.582 

0.615 
0.610 

0.991 
0.993 

0.882 
0.885 

0.584 
0.580 

0.6 I3 
0.608 

0.905 

0.576 

0.604 

0.995 

0.889 

0.574 

0.602 

and 

In (4) and (9, W ( a )  is the weight of configuration a which contributes to K'and has 
the expression K"(u)  where n ( a )  is the number of animal sites in the a configuration. 
m(P) in (4) and ( 5 )  is the number of steps in the DSAW /I. The renormalised lattice 
is constructed from the effective lengths Sll(b) and S,(b)  and is deformed from the 
original lattice (figure 1) .  Following the same arguments as given in (6)-(9) of ZY, the 
DSAW exponents VI/ and uI, for the first moment definitions of SI,( b )  and S,( b ) ,  have 
the expressions 

vi( b )  = ln[Si(b)/ Si( l)]/ln A (b ,  l) ,  i = 11 or I ( 6 )  
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where the eigenvalue A(b, 1)  is given by dZ’/dZ)(K*,z:,. Similarly, using the second 
moment definitions of SI?’( b )  and Sy’ (  b ) ,  we obtain vf)( b )  and vy’( b) .  We believe 
that, in the large b limit, both first and second moment definitions of vII and vI will 
converge to the correct results. In fact, this has been shown to be true when DSAW is 
performed in a pure square lattice (zY). 

The results of RG calculation for both ro and rl rules are given in table 1 for 
b = 2,3,4 and 5 .  The values of vII are only given for the case of ro rule. As expected, 
the value of vil approaches the exact result ( vIl = 1)  in the large 6 limit. Similar results 
are obtained for vi:’ in the case of rl rule. In order to estimate the limiting value of 
v,(b) as b goes to infinite, we use the following extrapolation procedure (Yang and 
Zhang 1984). We first make the following plausible assumptions. For the cell-to-bond 
transformation, the effective lengths Sli(b), S,( b )  and the eigenvalue A (  b, 1) would 
behave, in the large b limit, like 

where 8 = vi, /  v, and AI,  A,,  I?,, B2, C, and C2 are constants. The reasons that we 
propose (7)-(9) are the following. In the b + 00 limit, we certainly have Sll( b )  - b, this 
gives (7). The exponents l / 8  and 1/ vll in (8) and (9) are to ensure that correct values 
of v, and vll are approached as b + m .  The exponents x, y and z are the corrections 
to the finite size effect. Equations (7)-(9) are indeed the correct expressions for the 
case of DSAW on pure square lattice ( z Y ) .  Substituting (7)-(9) into (6), we find, to the 
first three leading terms, 

(10) 
v, - I  ( b )  = v;’ + e,(ln b)-’ + e2(ln b)- ,  

where e, and e, are constants independent of b. Fitting the data of table 1 to (lo), we 
find the estimates of v, and v y ’  are respectively v?kyAw = 0.578 and 0.604 for ro rule, 
&tAW = 0.576 and 0.603 for rl rule. The best estimate of v, can be determined by 
the value which gives the best overall fit to the four sets of data simultaneously. From 

0.500 1 
0 0.5 1.0 

I l l n b  

Figure 2. DSAW on DLA. The results of u , ( b )  and uF’(b)  obtained by using ro rule are 
plotted against l/ln b. The extrapolated values are also shown. 
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this procedure, we find vyktAw = 0.590, e, = -0.2 13 and e, = 0.067. The value 0.590 is 
indeed much higher than the mean field value 0.5. In order to give an impression of 
the quality of the results, we plot the values of v,(b) and v',Z'(b) in figure 2 together 
with their extrapolated values. Since the results from ro and r ,  rules are very close to 
each other, only the results for the r,, rule are shown. 'The best value v y k A W  = 0.590 
obtained from the overall fit is also shown. 

3. DSAW on DPC 

To study the statistics of DSAW on directed site percolation clusters at threshold ~ , ( D S P C )  

in a square lattice, we use a similar method to that described in 0 2 with a little 
modification. Each site belonging to the original cell is occupied with probability p 
and unoccupied with probability q = 1 - p .  To define the site occupation probability 
p' in the renormalised cell, we can use either the ro or r ,  rule. As in the case of DSAW 

on DSLA described in 0 2, both ro and r ,  rules will lead to very similar results. Here, 
we will only use the r ,  rule which requires a connected path spanning the cell from 
one edge to the opposite edge in a particular direction. The recursion relations of p '  
for b = 2 and 3 are given in appendix 2. 

In treating the case of DSAW in pure lattice, for each DSAW, ZY have arranged the 
position of the cells so that the DSAW always pass through the origin of the cells. The 
effective lengths Sll(b) and S,(b)  can be correctly obtained only by doing so. Thus, 
to study the statistics of DSAW on DPC, among all the possible configurations which 
contribute to p ' ,  we select a set of configurations, A, in which the origin in the original 
cell is occupied and there exists at least one DSAW connecting the origin to the opposite 
edge of the cell, because only from those configurations can we obtain the correct 
statistics of DSAW and the correct effective lengths Sll(b) and S , ( b ) .  

Let fb( p )  be the total probability of all the configurations belonging to A. For each 
configuration a belonging to A, we associate fugacity Z to each step of allowed DSAW 

p. Two lengths rll( p ; a )  and r,( p ;  a )  are defined in the same way as described in 
§ 2. Thus we have the following expressions for the recursion relation of Z' and the 
effective lengths Sll( b )  and S,( b )  

fb(p)Z '=  c W ( a )  Zm(P) 
CI€A B 

W (  a )  is the probability of the configuration a and has the expression p n ( a ) q ' ( U )  where 
n(a) and [ ( a )  are respectively the number of occupied and perimeter sites in the a 
configuration. Clearly, we have X a P A  W ( a )  = f b ( p ) .  m( p )  is the number of steps in 
the DSAW p. ( p * ,  Z * )  is the non-trivial fixed point of the recursion relations p '  and 
Z'. The exponents v l l (b)  and v,(b) are still given by (6) with A(b, I )  = (dZ'/dZ)(,*,zt,. 
Similarly, the second moment definitions of Sf'( b) ,  S y ' (  b ) ,  vi12)( b )  and v',Z)( b )  can 
also be used. The recursion relations of&( p )Z '  for b = 2 and 3 are given in appendix 2. 

The results of RG calculations are given in table 2 for b = 2,3,4 and 5. In the large 
b limit, the values of vI1( b )  also seem to approach the exact result vll = 1. Similar results 
are obtained for vi;'. Fitting the data of table 2 to ( I O ) ,  we find the estimates of v l  
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Table 2. RG results for DSAW on DSPC in a square lattice using r ,  rule. 

b b ' =  1 2 3 4 

P* 2 0.618 
3 0.648 0.684 
4 0.664 0.692 0.702 
5 0.673 0.697 0.705 0.708 

3 0.685 0.686 
4 0.689 0.688 0.688 
5 0.692 0.689 0.689 0.689 

3 0.49 1 0.498 
4 0.492 0.500 0.505 
5 0.493 0.503 0.508 0.513 

3 0.546 0.553 
4 0.547 0.555 0.559 
5 0.548 0.557 0.561 0.565 
2 0.996 
3 0.993 0.988 
4 0.992 0.989 0.990 
5 0.992 0.989 0.990 0.991 

Z* 2 0.674 

v, 2 0.49 I 

vi" 2 0.546 

and VI" are respectively vyL5Aw = 0.503 and 0.556. By fitting two sets of data simul- 
taneously, we find v?EzAw = 0.528 which is again higher than the mean field value 0.5. 
The values of e ,  and e ,  are respectively e ,  = 0.074 and e2 = -0.032. 

4. Conclusions and discussion 

In this work, the properties of DSAW on DLA and DPC are studied. We have shown 
rigorously that the DSAW exponent vll always has the value 1 independent of the 
underlying fractals. To study the possible change of the exponent vL, we use the RSRG 

method proposed by ZY extended to the two-parameter case to calculate the values of 
vl for DSAW on DSLA and DSPC in a square lattice. The results are ~y~&,~=0.590 
and = 0.528. In agreement with our original expectation, the values of vL have 
changed to higher values than the mean field result 0.5. The fact that the value of 

iDSAW is larger than that of vyEzAW is also expected. This is because DLA has an 
averaged fractal dimension dDLA=2/(0.8+0.5) = 1.54 (Redner and Yang 1982) which 
is smaller than that of DPC; i.e. ~D,,=2/[0.39(1.734+ 1.100)]= 1.81 (Kinzel 1983). 
Finally, we remark that the relative large differences between the values of U, and U?) 
(tables 1 and 2 )  indicate that the probability distributions of rl( p ; U )  in (4) and (12) 
are quite broad. This also explains the slow convergence of the difference between U, 
and U?) when b becomes large. This is particularly so for the case of DSAW on DPC. 
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Appendix 1. Recursion relations for DSAW on DSLA 

b = 2  
r,rule: K ’ = 2 K 2 + 3 K 3 + K 4  
rl rule: K ’ =  K 2 + 3 K 3 +  K4 
r, and rl rules: K ’ Z =  K’Z2+2K3(Z2+Z3)+ K4(Z2+2Z3)  

r,, rule: K ‘ = 2 K 3 +  10K4+ 19K5+20K6+ 14K7+6K8+ K9 
r, rule: K ’ =  K3+5K4+ 15K5+ 19K6+ 14K7+6K8+ K9 
r, and rl rules: K’Z’= K3Z3+3K4(Z3+Z4)+  K5(6Z3+ 11Z4+6Z5) 

b = 3  

+ K6(9Z3+ 19Z4+ 16Z5)+ K7(9Z3+20Z4+22Z5) 
+ K8(5Z3+ 12Z4+ 18Z5)+ K9(Z3+3Z4+6Z5).  

Appendix 2. Recursion relations for DSAW on DSPC using r ,  rule 
b = 2  

p ‘  = p’( q + q 2 )  + 3p3q +p4 
f r (p )Z’=  p2q2Z2+p3q(2Z2+2Z3)+p4(Z2+2Z3)  
f 2 ( P )  = p2q2+3p3q +P4 

b = 3  
= p3(q2+2q4) +p4(2q2+ 5 q 3  +4q4+ q 5 )  + p 5 ( 5 q 2 +  10q3+ 9q4) 

f 3 ( p ) ~ ’ =  p 3 q 4 z 3 + p 4 q 3 ~ 3 + p 4 q 4 ( 3 ~ 3 + 2 z 4 )  + p 4 q 5 z 4 + p 5 q 2 ~ 5  

+p6q2(223 + 4 z 4 +  7 z 5 )  + p 6 q 3 (  12z3 + 2 1 z4+ 1 2 2 ~ )  
+ p’q(  z4 + 325) + p7q2( 1 3 23 + 25 2 4  + 2 5 2 5 )  

+ p 6 ( q  +7q2+20q3) + p 7 ( q  + 18q2) + 7p8q + p 9  

+ p 5 q 3 ( 5 Z 3  + 5Z4+3Z5) +p5q4(4Z3 +8Z4+2Z5)  

+p8q(6Z3 + 14Z4+ 21Z5) +p9( Z3 + 3Z4+ 6Z5) 

+ p 7 ( q  + 18q’) +7p8q +p9. 
f 3 ( p )  = p3q4+p4(q3 + 4q4+ q 5 )  + p 5 ( q 2  + 9q3 +9q4) +p6(7q2+ 20q3) 
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